雷春雨 E-mail: leichygzu@sina.cn; QQ:969290985 雷春雨,贵州贵阳人,彝族,理学博士, 副教授 专业:基础数学 研究方向:非线性泛函分析 主讲课程:非线性泛函分析,泛函分析 主要学习工作经历 1. 2011.09-2014.06 西南大学攻读理学硕士学位; 2. 2014.07-2019.09 任职于贵州民族大学; 3. 2019.09-2022.06 南京师范大学攻读博士学位; 4. 2021.00-至今 任职于贵州民族大学 科研情况 (1)C.Y. Lei, J. Lei,H.M. Suo, Groundstate for the Schrodinger-Poisson-Slater equation involving the Coulomb-Sobolev critical exponent, Adv. Nonlinear Anal.,12(2023) 20220299. (2)C.Y. Lei, B.L. Zhang, Sufficient and necessary conditions for Normalized solutions to a Choquard equation, J. Geom. Anal.,33(2023) pp 1-16. (3)C.Y. Lei, V.D. Radulescu, B.L. Zhang, Low perturbations and combined effects of critical and singular nonlinearities, Appl. Math. Optimization,87(2023) pp 1-38. (4)C.Y. Lei, B.L. Zhang, Ground state solutions for nonlinear Choquard equations with doubly critical exponents, Appl. Math. Lett., 125 (2022) 107715. (5)C.Y. Lei, J.F. Liao, A nonsmooth theory for a logarithmic elliptic equation with singular nonlinearity, Acta Math. Scientia, 42 (2022) 502--510. (6)C.Y. Lei, Y.T. Lei, B.L. Zhang, Solutions for critical Kirchhoff-type problems with near resonance, J. Math. Anal. Appl., 513 (2022) 126205. (7)C.Y. Lei, Y.T. Lei, On the existence of ground states of an equation of Schrodinger-Poisson-Slater type, C. R. Math. Acad. Sci. Paris, 359 (2021) 219--227. (8)C.Y. Lei, J.F. Liao, Positive radial symmetric solutions for a class of elliptic problems with critical exponent and -1 growth, Adv. Nonlinear Anal., 10 (2021) 1222--1234. (9)C.Y. Lei, G.S. Liu, Near resonance for a Kirchhoff-Schrodinger-Newton system, Indian J. Pure Appl. Math., 52 (2021) 363--368. (10)C.Y. Lei, T.T. Zheng, H.N. Fan, Positive solutions for a critical elliptic problem involving singular nonlinearity, J. Math. Anal. Appl., 498 (2021) 124969. (11)C.Y. Lei, G.S. Liu, C.M. Chu, H.M. Suo, New multiple solutions for a Schrodinger-Poisson system involving concave-convex nonlinearities, Turkish J. Math., 44 (2020) 986--997. (12)C.Y. Lei, G.S. Liu, H.M. Suo, Positive solutions for a Schrodinger-Poisson system with singularity and critical exponent, J. Math. Anal. Appl., 483 (2020) 123647. (13)C.Y. Lei, J.F. Liao, Multiple positive solutions for Schrodingr-Poisson system involving singularity and critical exponent, Math. Methods Appl. Sci. 42 (2019) 2417--2430. (14)C.Y. Lei, J.F. Liao, Multiple positive solutions for Kirchhoff type problems with singularity and asymptotically linear nonlinearities, Appl. Math. Lett. 94 (2019) 279-285. (15)C.Y. Lei, On a Schrodinger-Poisson system with singular term and critical growth, Houston J. Math., 40 (2019) 873--892. (16)C.Y. Lei, G.S. Liu, Multiple positive solutions for a Schrodinger-Newton system with sign-changing potential, Comput. Math. Appl. 77 (2019) 631-640. singularity and critical growth, J. Math. Anal. Appl. 459 (2018) 959–979. (17)C.Y. Lei, Existence and multiplicity of positive solutions for Neumann problems involving singularity and critical growth, J. Math. Anal. Appl. 459 (2018) 959–979. (18)C.Y. Lei, C.M. Chu, H.M. Suo, Three solutions of a Kirchhoff type problem involving critical growth and near resonance, Indian Journal of Pure and Applied Mathematics, 49 (2018) 99–112. (19)C.Y. Lei, H.M. Suo, Positive solutions for a Schodinger-poisson system involving concave-convex nonlinearities, Comput. Math. Appl., 74 (2017) 1516–1524. (20)C.Y. Lei, C.M. Chu, H.M. Suo, Positive solutions for a nonlocal problem with singularity,Electronic Journal of Differential Equations, 2017 (2017) No.85, pp: 1–9. (21)C.Y. Lei, J.F. Liao, H.M. Suo, Multiple positive solutions for nonlinear problems involving a sign-changing potential, Electronic Journal of Differential Equations, 2017 (2017) No.09,pp: 1–8. (22)G.S. Liu, C.Y. Lei, L.T. Guo, Rong Hong, Multiple positive solutions for Kirchhoff problems with sign-changing potential, Electronic Journal of Differential Equations, 2015(2015) No.202, pp.1–10. (23)J.F. Liao, X.F. Ke, C.Y. Lei, C.L. Tang, A uniqueness result for Kirchhoff type problems with singularity, Appl. Math. Lett., 59 (2016) 24–30. (24)C.Y. Lei, H.M. Suo, C.M. Chu, L.T. Guo, On ground state solutions for a Kirchhoff type equation with critical growth, Comput. Math. Appl., 72 (2016) 729–740. (25)C.Y. Lei, G.S. Liu, L.T. Guo, Multiple positive solutions for a Kirchhoff type problem with a critical nonlinearity, Nonlinear Analysis:Real World Applications, 31 (2016) 343–355. (26)C.Y. Lei, C.M. Chu, H.M. Suo, C.L. Tang, On Kirchhoff type problems involving critical and singular and nonlinearities. Annales Polonici Mathematici 114 (2015) 269–292. (27)C.Y. Lei, J.F. Liao, C.L. Tang, Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents. J. Math. Anal. Appl., 421 (2015) 521–538. 主持项目 1.含临界指数的Schrodinger-Poisson-Slater方程可解性研究(ZK[2022]199), (省级) 起止年月:2022.01-2025.01. 2.含临界指数增长的薛定谔-泊松系统多解性研究(KJ[2019]1163),(省级)起止年月:2019.01-2021.12. 3.含临界指数增长的Kirchhoff型方程变号解和正解的存在性若干问题研究(KY[2016]163),(厅级)起止年月:2016.08-2019.07. 4.含临界指数和奇异的Kirchhoff型方程的问题研究(KJ[2015]7207), (省级) 起止年月:2015.01―2018.01. |