刘小华,女,汉族,1975年12月生,湖南涟源人,中共党员,理学博士研究生,教授,硕士生导师(贵州民族大学)。
主要研究领域:微分方程定性分析。
1.科研成果
(1)主持(或主研)科研项目5项。
(1) 贵州省科学技术厅基金一般项目、黔科合基础[2019]1162号、分数阶 K-S 方程的行波解及其稳定性研究、2019/01-2021/12、10万元、结题、刘小华主持。
(2) 贵州省科学技术厅基金一般项目、黔科合J字[2013]2138号、耦合KdV型方程的孤波解及其稳定性研究、2013/04-2016/04、4万元、已结题、刘小华主持。
(3) 贵州省教育厅自然科学基金一般项目、KY2012[092]、贵州省高校优秀科技创新人才支持计划、2013/01-2014/12、2万元、已结题、刘小华主持。
(4) 贵州省科学技术厅基金一般项目、黔科合J字LKM[2011]14、非线性发展方程行波解的求解研究、2011/09-2013/08、3万元、已结题、刘小华主持。
(5) 贵州省教育厅自然科学基金青年项目、黔教科(2010026)、具奇线的非线性发展方程的行波研究、2011/01-2013/01、4万元、已结题、刘小华主持
(2)发表论文情况。
(1) Xiaohua Liu#* ; The stability of exact solitary wave solutions for simplified modified Camassa–Holm equation, Communications in Nonlinear Science and Numerical Simulation, 108(2022),106224
(2) 刘小华 ; Orbital stability of solitary wave solutions of Kudryashov–Sinelshchikov equation, Eur. Phys. J. Plus, 2020, 135(1)。
(3) Xiaohua Liu#*, Bifurcation and the exact smooth, cusp solitary and periodic wave solutions of the generalized Kudryashov–Sinelshchikov equation, Ricerche di Matematica (2020),Published: 24 January 2020,)
(4) Xiaohua Liu#*, Orbital stability of standing waves for nonlinear fractional Schrödinger equation with unbounded potential, Asian-European Journal of Mathematics, Vol. 12, No. 3 (2019) 1950043(ESCI).
(5) Xiaohua Liu#*, The Traveling Wave Solutions of Space-Time Fractional Differential Equation Using Fractional Riccati Expansion Method, Journal of Applied Mathematics and Physics, 2018, 6,
(6) XiaoHua Liu#*, Orbital stability of solitary wave solutions of Zakharov–Rubenchik equation, Pure and Applied Mathematics Quarterly,Volume 13, Number 4, 693–710, 2017(SCI), 1957-1967.
(7) 刘小华#*,胡丽金,余孝军,非线性色散系统孤波解的轨道稳定性,四川师范大学学报(自然科学版),39(1)(2016):51-58.
(8) xiaohua Liu#*, weiguo zhang, zhengming Li, The orbital stability of the solitary wave solutions of the generalized Camassa–Holm equation, Journal of Mathematical Analysis and Applications, 398(2013),776-784 (SCI).
(9) xiaohua Liu#*, weiguo Zhang, Zhengming Li ,Application of improved () -expansion method to traveling wave solutions of two nonlinear evolution equations,Advances in Applied Mathematics and Mechanics,4(2012),122-130(SCI).
(10) 刘小华#*,广义Camassa-Holm方程的行波解,系统科学与数学,2(2012),852-864.
(11) 刘小华#*,张卫国,具任意次非线性项的非线性Klein-Gordon方程孤波解的轨道稳定性,工程数学学报,28(2011),75-379.
(12) xiaohua Liu#*, weiguo Zhang,The Stability of the Solitary Wave Solutions to the Generalized Compound Kdv Equation,Asian-European Journal of Mathematics, 4 (2011), 475—480.
(13) 刘小华#*, 张卫国,修正Camassa-Holm方程尖峰孤波解的稳定性,生物数学学报,3 (2011),517-523.
(14).xiaohua Liu ,weiguo Zhang, The Linear Stability of Traveling Waves to the Compound Kdv-Burgers Equation, Applied Mathematical Sciences, Vol. 4, 2010, no. 20, 959—966(MR2595531)
(15). xiaohua Liu,Orbital stability of solitary waves to the genealized KdV equation with fifth order,the 2nd international conference on multimedia technology (ICMT 2011 国际会议,ISBN: 9781612847726)(EI检索号1212067993)
(16). liuxiaohua,hecaixia, New Exact Solitary Wave Solutions of a Coupled Nonlinear Wave Equation, Abstract and Applied Analysis(SCI)Volume 2013,Article ID 301645,7 pages,
(17). liuxiaohua,hecaixia, New Traveling Wave Solutions to the Vakhnenko-Parkes Equation,ISRNMathematical Physics Volume 2013, Article ID 178648, 4 pages
2.联系方式
邮箱/办公电话:lxhjkkl@yeah.net/13618519978